Vol 16 No 1 (2025): March
Innovative Technologies and Digital Solutions for Community Development

Hybrid Solar-LPG Dryer for Efficient Shallot Post-Harvest Drying
Pengering Hibrida Tenaga Surya-LPG untuk Pengeringan Bawang Merah Pasca Panen yang Efisien


Mohamad Imron Mustajib
Jurusan Teknik Industri dan Mesin, Universitas Trunojoyo Madura, Indonesia *
Fuad Hasan
Program Studi Agribisnis, Universitas Trunojoyo Madura, Indonesia
Rima Tri Wahyuningrum
Jurusan Teknik Informatika, Universitas Trunojoyo Madura, Indonesia
Ikrom Maulana Malik Ibrohim
Program Studi Teknik Mesin, Universitas Trunojoyo Madura, Indonesia
Hilman Tsaqif Yudiansyah
Program Studi Teknik Mesin, Universitas Trunojoyo Madura, Indonesia
Moh Idzul Islam
Program Studi Teknik Mesin, Universitas Trunojoyo Madura, Indonesia
Reynaldi Prasetyo
Program Studi Teknik Mesin, Universitas Trunojoyo Madura, Indonesia
Ferdy Albarizy
Program Studi Teknik Mesin, Universitas Trunojoyo Madura, Indonesia

(*) Corresponding Author
Picture in here are illustration from public domain image or provided by the author, as part of their works
Published January 7, 2025
Keywords
  • Shallots,
  • Post-Harvest,
  • Drying,
  • Hybrid Technology,
  • Pyramid Dryer
How to Cite
Mustajib, M. I., Hasan, F., Wahyuningrum, R. T., Ibrohim, I. M. M., Yudiansyah, H. T., Islam, M. I., Prasetyo, R., & Albarizy, F. (2025). Hybrid Solar-LPG Dryer for Efficient Shallot Post-Harvest Drying. Indonesian Journal of Cultural and Community Development, 16(1), 10.21070/ijccd.v16i1.1200. https://doi.org/10.21070/ijccd.v16i1.1200

Abstract

Background: Shallots are an important crop in Indonesia, but post-harvest drying remains inefficient, especially in Karang Penang Oloh Village, where traditional sun drying leads to quality loss and long drying times. Aims: This study aims to design a hybrid solar-LPG pyramid dryer to improve drying efficiency and product quality for local farmers. Results: The dryer successfully dried 20 kg of shallots in 10 hours, reducing moisture content from 86% to 12.44%-15.99%. Novelty: The hybrid solar-LPG system offers a scalable and efficient solution for larger-scale drying. Implications: This technology can enhance post-harvest processing, improving both drying time and product quality, with potential for broader agricultural applications.

Highlights:

  • Hybrid solar-LPG system reduces drying time for shallots.
  • Moisture content of shallots reduced to optimal levels (12.44%-15.99%).
  • Pyramid dryer design improves drying efficiency and product quality.

Keywords: Shallots, Post-Harvest, Drying, Hybrid Technology, Pyramid Dryer

References

  1. E. Adam, W. Mühlbauer, A. Esper, W. Wolf, and W. Spiess, "Quality Changes of Onion (Allium Cepa L.) as Affected by the Drying Process," Nahrung - Food, vol. 44, no. 1, pp. 32–37, 2000. doi: 10.1002/(sici)1521-3803(20000101)44:1<32::aid-food32>3.3.co;2-6.
  2. A. Adetya and I. Suprapti, "Analisis, Produksi, Pendapatan dan Risiko Usaha Tani Bawang Merah di Kecamatan Sokobanah Kabupaten Sampang Provinsi Jawa Timur," Agrisience, vol. 2, no. 1, pp. 17–31, 2021.
  3. N. Amir, M. Imron Mustajib, M. Gozan, and C. Chan, "Development of a Novel Tray Solar Dryer for Aquaculture Product: Experimental Study on Drying Kinetics and Product Quality in Eucheuma Cottonii Seaweed," Solar Energy, vol. 273, Nov. 2023, Art. no. 112503. doi: 10.1016/j.solener.2024.112503.
  4. Badan Pusat Statistik (BPS), Kecamatan Karang Penang Dalam Angka, BPS Kabupaten Sampang, 2023.
  5. P. D. Dunn, Appropriate Technology: Technology with a Human Face, The Macmillan Press Ltd., 1978.
  6. H. El Hage, A. Herez, M. Ramadan, H. Bazzi, and M. Khaled, "An Investigation on Solar Drying: A Review with Economic and Environmental Assessment," Energy, vol. 157, pp. 815–829, 2018. doi: 10.1016/j.energy.2018.05.197.
  7. F. Hasan and I. Suprapti, Kajian Sosial Ekonomi Bawang Merah di Madura, UTM Press, 2021
  8. B. Hazeltine and C. Bull, Field Guide to Appropriate Technology, Academic Press, 2003.
  9. A. A. Jakfar, M. I. Mustajib, M. Rum, and H. Purwanto, "Upaya Peningkatan Ekonomi Melalui Penguatan Aspek Produksi Dan Pemasaran Pada Petani Bawang Merah di Kabupaten Sumenep," Journal of Economic Community Service, vol. 2, no. 2, pp. 1–6, 2023.
  10. P. R. Kiran et al., "A Comprehensive Review on Recent Advances in Postharvest Treatment, Storage, and Quality Evaluation of Onion (Allium Cepa): Current Status, and Challenges," Future Postharvest and Food, vol. 1, no. 1, pp. 124–157, 2024. doi: 10.1002/fpf2.12009.
  11. P. Majumder and A. Sinha, "Drying of Selected Major Spices: Characteristics and Influencing Parameters, Drying Technologies, Quality Retention and Energy Saving, and Mathematical Models," Food and Bioprocess Technology, vol. 14, pp. 1028–1054, 2021.
  12. J. Mitra, S. L. Shrivastava, and P. S. Rao, "Onion Dehydration: A Review," Journal of Food Science and Technology, vol. 49, no. 3, pp. 267–277, 2012. doi: 10.1007/s13197-011-0369-1.
  13. M. A. Muflikhun and Jamasri, Moisture (Kelembapan): Konsep, Pengukuran, dan Aplikasi, Gadjah Mada Press, 2024.
  14. W. Muhlbauer and J. Muller, Drying Atlas: Kinetics and Quality Agricultural Products, Elsevier GmbH, 2020. doi: 10.1016/c2018-0-02312-9.
  15. M. I. Mustajib and Burhan, "Peningkatan Added Value Kopra Putih Dengan Metoda Indirect Drying," Agrointek, vol. 8, no. 1, pp. 1–7, 2014.
  16. S. Nurjannah and F. Hasan, "Analisis Variasi Produktivitas Usahatani Bawang Merah di Kecamatan Sokobanah Kabupaten Sampang," Agriscience, vol. 2, no. 1, pp. 129–147, 2021. doi: 10.21107/agriscience.v2i1.11283.
  17. S. Pandey, A. Kumar, and A. Sharma, "Sustainable Solar Drying: Recent Advances in Materials, Innovative Designs, Mathematical Modeling, and Energy Storage Solutions," Energy, vol. 308, Mar. 2024, Art. no. 132725. doi: 10.1016/j.energy.2024.132725.
  18. N. Philip, S. Duraipandi, and A. Sreekumar, "Techno-Economic Analysis of Greenhouse Solar Dryer for Drying Agricultural Produce," Renewable Energy, vol. 199, Apr. 2022, pp. 613–627. doi: 10.1016/j.renene.2022.08.148.
  19. O. Prakash and A. Kumar, Solar Drying Technology: Concept, Design, Testing, Modeling, Economics and Environment, Springer, 2020. doi: 10.1201/9780429299353.
  20. D. Rees, G. Farrell, and J. Orchard, Crop Post-Harvest: Science and Technology, 1st ed., Wiley-Blackwell, 2012.
  21. G. P. Sharma, R. C. Verma, and P. Pathare, "Mathematical Modeling of Infrared Radiation Thin Layer Drying of Onion Slices," Journal of Food Engineering, vol. 71, no. 3, pp. 282–286, 2005. doi: 10.1016/j.jfoodeng.2005.02.010.
  22. S. W. Sharshir, A. Joseph, G. Peng, A. W. Kandeal, A. S. Abdullah, G. B. Abdelaziz, E. M. A. Edreis, and Z. Yuan, "Recent Efforts in Developing Agricultural Product Drying Processes Using Solar Energy," Solar Energy, vol. 257, Dec. 2022, pp. 137–154. doi: 10.1016/j.solener.2023.04.022.
  23. T. I. Suravi, M. K. Hasan, I. Jahan, J. Shopan, M. Saha, B. Debnath, and G. J. Ahammed, "An Update on Post-Harvest Losses of Onion and Employed Strategies for Remedy," Scientia Horticulturae, vol. 338, Sep. 2024, Art. no. 113794. doi: 10.1016/j.scienta.2024.113794.
  24. A. Tefera, W. Endalew, and B. Fikiru, "Evaluation and Demonstration of Direct Solar Potato Dryer," Livestock Research for Rural Development, vol. 25, no. 12, pp. 1–8, 2013.
  25. P. Udomkun, S. Romuli, S. Schock, B. Mahayothee, M. Sartas, T. Wossen, E. Njukwe, B. Vanlauwe, and J. Müller, "Review of Solar Dryers for Agricultural Products in Asia and Africa: An Innovation Landscape Approach," Journal of Environmental Management, vol. 268, Art. no. 110730, 2020. doi: 10.1016/j.jenvman.2020.110730.