Vol. 16 No. 2 (2025): June
Community Education Development Articles

Decision Tree Analysis for Predicting Voter Participation Using IDM Data: Analisis Pohon Keputusan untuk Memprediksi Partisipasi Pemilih Menggunakan Data IDM

Mahmud Adi Yuwanto
Program Studi Informatika, Universitas Muhammadiyah Sidoarjo, Indonesia
Arif Senja Fitrani
Universitas Muhammadiyah Sidoarjo, Indonesia
Rohman Dijaya
Program Studi Informatika, Universitas Muhammadiyah Sidoarjo, Indonesia
Uce Indahyanti
Program Studi Informatika, Universitas Muhammadiyah Sidoarjo, Indonesia
Categories

Published 2025-06-20

Keywords

  • Voter Participation ,
  • Village Development Index,
  • Decision Tree,
  • Machine Learning,
  • Mataraman

How to Cite

Decision Tree Analysis for Predicting Voter Participation Using IDM Data: Analisis Pohon Keputusan untuk Memprediksi Partisipasi Pemilih Menggunakan Data IDM. (2025). Indonesian Journal of Cultural and Community Development, 16(2), 10.21070/ijccd.v16i2.1255. https://doi.org/10.21070/ijccd.v16i2.1255

Abstract

General Background: Voter participation serves as a core indicator of democratic quality and civic awareness. Specific Background: In East Java’s Mataraman region, significant disparities in electoral participation highlight socioeconomic influences measurable through the Village Development Index (IDM). Knowledge Gap: No prior research integrates IDM-based indicators with machine learning methods for voter behavior prediction. Aims: This study develops a classification model using C4.5, Naïve Bayes, and SVM algorithms to predict voter participation based on IDM attributes. Results: The Decision Tree C4.5 algorithm achieved the highest accuracy (80.87%) and F1-score (0.88) compared to Naïve Bayes and SVM, identifying education and healthcare access as primary determinants of high participation. Novelty: The integration of IDM and C4.5 classification introduces a novel framework for data-driven political participation analysis. Implications: The model can assist policymakers and electoral bodies in targeting civic engagement initiatives within underrepresented regions.

  • Highlights:

  1. C4.5 algorithm effectively predicts voter engagement.

  2. Education and health access influence participation.

  3. Data-driven policy enhances democratic quality.

References

  1. [1] D. E. Safitri and A. S. Fitrani, “Implementasi Metode Klasifikasi dengan Algoritma Support Vector Machine Kernel Gaussian RBF untuk Prediksi Partisipasi Pemilu terhadap Demografi Kota Surabaya,” Indonesian Journal of Business Intelligence (IJUBI), vol. 5, no. 1, pp. 36–44, 2022, doi: 10.21927/ijubi.v5i1.2259.
  2. [2] A. W. Anggraeni, A. S. Fitrani, and A. Eviyanti, “Penerapan Algoritma Support Vector Machine untuk Memprediksi Tingkat Partisipasi Pemilu terhadap Kualitas Pendidikan,” Edumatic: Jurnal Pendidikan Informatika, vol. 8, no. 1, pp. 21–27, 2024, doi: 10.29408/edumatic.v8i1.24838.
  3. [3] A. S. Kirana, R. Roeswidiah, and A. Pudoli, “Analisis Sentimen pada Media Sosial terhadap Layanan Samsat Digital Nasional,” Jurnal Teknologi Informasi, vol. 8, pp. 53–63, 2025.
  4. [4] M. J. Siddiq et al., “Analisis Media Sosial terhadap Pilkada 2024 di Twitter menggunakan Algoritma Naïve Bayes,” Jurnal Ilmiah Informatika, vol. 13, no. 2, pp. 609–622, 2025.
  5. [5] Y. Izamahendra and M. Subhan, “Desa Pariaman Timur Berdasarkan Indeks Desa Membangun 2023,” Jurnal Pemerintahan dan Pembangunan Daerah, vol. 13, no. 2, pp. 204–211, 2025.
  6. [6] A. Akram et al., “Mini-Batch K-Means Clustering untuk Pengelompokan Data,” Jurnal Teknologi Komputer, pp. 235–244, 2024.
  7. [7] E. F. Laili et al., “Komparasi Algoritma Decision Tree dan Support Vector Machine (SVM) dalam Klasifikasi,” Jurnal Sistem Informasi, vol. 8, no. 1, pp. 67–76, 2025.
  8. [8] F. Teknik et al., “Metode Decision Trees untuk Evaluasi dan Supervisi Pembentukan Karakter Siswa di Sekolah Kejuruan,” Jurnal Teknologi Pendidikan, vol. 9, no. 1, pp. 8–12, 2025.
  9. [9] S. Danil et al., “Model pada Kabupaten/Kota di Indonesia menggunakan Metode Statistik,” Jurnal Statistik Nasional, vol. 13, no. 2, pp. 829–835, 2025.
  10. [10] J. Riset and S. Informasi, “Analisis Pola Kehadiran Mahasiswa menggunakan Machine Learning,” Jurnal Riset dan Sistem Informasi, vol. 2, no. 1, pp. 60–66, 2025.
  11. [11] D. M. Chulloh, A. S. Fitrani, I. R. Indra Astutik, and A. Eviyanti, “Uji Akurasi K-Means dalam Prediksi Partisipasi Pemilu pada Demografi Wilayah Kabupaten Pasuruan,” JUTISI: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 13, no. 1, pp. 201–210, 2024, doi: 10.35889/jutisi.v13i1.1753.
  12. [12] D. Pilendia, “Pemanfaatan Adobe Flash sebagai Dasar Pengembangan Bahan Ajar Fisika: Studi Literatur,” Jurnal Pendidikan Dasar, 2020.
  13. [13] W. Kurniawati, A. S. Fitrani, S. Aji, and S. Suprianto, “Analisis Kehadiran Pemilih di Tempat Pemungutan Suara pada Pemilihan Presiden menggunakan Algoritma C4.5,” Journal of Electrical Engineering, vol. 1, no. 1, pp. 18–25, 2024, doi: 10.47134/jte.v1i1.2475.
  14. [14] D. M. Chulloh et al., “Uji Akurasi K-Means dalam Prediksi Partisipasi Pemilu pada Demografi Wilayah Kabupaten Pasuruan,” JUTISI: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 13, no. 1, pp. 201–210, 2024.
  15. [15] W. Kurniawati et al., “Analisis Kehadiran Pemilih di TPS"